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ABSTRACT DAF

DDI

DFRC
NASA Dryden Flight Research Center (DFRC) is
working with the United States Navy to complete
ground testing and initiate flight testing of a modified
set of F/A-18 flight control computers. The
Production Support Flight Control Computers
(PSFCC) can give any fleet F/A-18 airplane an in-
flight, pilot-selectable research control law
capability. NASA DFRC can efficiently flight test the FAST
PSFCC for the following four reasons: (1) Six

F/A-18 chase aircraft are available which could be FRR
used with the PSFCC. (2) An F/A-18 processor-
in-the-loop simulation exists for validation HARV

testing. (3)The expertise has been developed in INS
programming the research processor in the PSFCC.
(4) A well-defined process has been established for ISM

clearing flight control research projects for flight. LMCS
This report presents a functional description of the

PSFCC. Descriptions of the NASA DFRC facilities, MC
PSFCC verification and validation process, and
planned PSFCC projects are also provided. MDA
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INTRODUCTION

Development of computer-controlled aircraft greatly

expanded the possibilities for control system design
engineers. Modem aircraft have handling qualities
which can be dictated by the flight control system
rather than the physical characteristics of the aircraft.

Because computers translate pilot inputs and sensed
feedbacks into surface positions, the choice of control

law algorithms is unlimited.

However, control law software development on

aircraft has historically been an extremely expensive

and time-consuming proposition. The main reason
for this situation is the large amounts of staff hours
devoted to designing, implementing, and testing

flight-critical software. Required testing facilities,
such as processor-in-the-loop simulations, are also

expensive and need long lead times to develop. Large
amounts of hours are required because of the flight-
critical nature of control law functions. Extremely

thorough testing is required because a control law
software malfunction can lead to the loss of an

aircraft and of a pilot's life.

The large expense and extended development time
have made in-flight experiments of different control
laws not viable for the majority of aircraft programs.

In general, once a control law architecture is agreed
upon, it is not altered until an operational deficiency

warrants change. Several organizations which do
control law research have recognized this problem

and developed aircraft that have research flight
control computer systems which are designed for

relatively fast control law modifications, while
retaining safety of flight through the primary control
system [1, 2]. Such systems can also be used to

change airframe characteristics in-flight to simulate
the characteristics of other airframes. These aircraft,

such as the variable stability Learjet (Calspan

Corporation, Buffalo, New York) and the F-16
Variable Stability In-Flight Simulator Test Aircraft
(VISTA) (General Dynamics, Fort Worth, Texas),

have been used primarily for handling qualities
studies. However, some advanced control law

architecture work has been done [2].

In the past, NASA Dryden Flight Research Center
(DFRC), Edwards, California, engineers have also
had aircraft designed for fast control law
modification, such as the F/A-18 High Angle of
Attack Research Vehicle (HARV) (McDonnell

Douglas Aerospace (MDA), St. Louis, Missouri) [3].
The HARV, a modified F/A-18 airplane with thrust-

vectoring paddles, was designed for flight test at high
angles of attack. The HARV flight control computers
were modified to include a pilot-selectable research

control law processor. This system allowed the
HARV to operate with conventional F/A-18 control
laws for all phases of flight and with research control
laws available at specified parts of the envelope.

System reversion was accomplished either manually
or automatically with system failure or envelope
violation. The HARV design provided a flexible

platform for control law algorithm research. The
ability to restore aircraft control to a baseline flight
control system with good handling qualities

throughout a broad flight envelope addressed many
of the safety-of-flight issues associated with
experimental control law architectures. Because of
HARV specific modifications, these flight control
computers were confined to the HARV and would not
work on other F/A- 18 aircraft.

The United States Navy (USN) desires to develop a

flight control system research capability for the
F/A-18 aircraft. The USN flight control engineers
want to duplicate F/A-18 flight control failures in-
flight for accident investigations and in-flight
demonstrations. This desire led the USN to finance

the early design of the Production Support Flight
Control Computers (PSFCC). These PSFCC are
derived from the HARV flight control computer
design, with one important difference: PSFCC are
intended to function on any fleet F/A-18 airplane
without modifications.

An interest in continuing control law research on an
F/A-18 aircraft led NASA DFRC to convert one of

the HARV flight control computer shipsets to a
PSFCC. Two duplicate PSFCC shipsets now exist:
one owned by the USN and one owned by NASA
DFRC. To accomplish the mutual goal with the USN
of using the PSFCC for in-flight research, the NASA
DFRC is in the process of completing the processor-
in-the-loop testing of the PSFCC in preparation
for flight test. These organizations will work
cooperatively to test the PSFCC at the NASA DFRC
and at the Naval Air Warfare Center, Patuxent



River,Maryland.Upon satisfactorycompletionof
hardware-in-the-loop testing, the PSFCC will be
flown on a NASA aircraft, initially by NASA and

USN pilots.

There are five major benefits to testing the PSFCC at

NASA DFRC. Dryden Flight Research Center has

• Six F/A-18 aircraft available for this type of
research

• Chase aircraft equipped with instrumentation
and telemetering systems for data transmission

• Processor-in-the-loop simulation for verifica-

tion and validation testing

• Personnel familiar with programming of the

research processor

• Safety-of-flight processes established which
address the concerns for an aircraft research

control system in a timely manner

Because of the resources already in place, NASA
DFRC control law research using the PSFCC should

be relatively easy and inexpensive.

This paper provides a functional description of the
PSFCC. A discussion of the resources available for

this type of research and of the excellent verification
and validation options that researchers find at NASA

DFRC is presented. In addition, potential activities
or uses of the PSFCC are described. Note that use of

trade names or names of manufacturers in this

document does not constitute an official endorsement

of such products or manufacturers, either expressed

or implied, by the NASA.

FUNCTIONAL DESCRIPTION

The PSFCC design uses a Research Flight Control

System (RFCS) processor in addition to the basic

F/A-18 quadraplex flight control computers. The
RFCS can be engaged by the pilot to exercise full-

authority control of the aircraft with research flight
control laws. The basic F/A-18 flight control system

is used for flight phases when the RFCS is not

engaged, such as takeoff and landing. This basic
flight control system also serves as the reversion

mode when the RFCS control laws are disengaged.
The basic F/A-18 control laws and the RFCS control

laws are computed continuously during flight.

Figure 1 shows how the PSFCC are integrated
into the F/A- 18 flight control system. The F/A- 18
aircraft is controlled by a quadredundant flight
control computer system. This system accepts
quadredundant signals for rate gyroscopes, accelero-
meters, and pilot inputs. Dual input signals are used
for airdata, angle of attack, and nose wheel steering
(NWS). The system outputs quadredundant signals
for stabilators and trailing-edge flaps. In addition,
dual signals are outputted for leading-edge flaps,
ailerons, and rudders. The baseline system also
receives Military Specification 1553 multiplex bus
data from the inertial navigation system (INS),
airdata computer, and mission computers (MC).

Figure 2 shows the elements the pilot uses to
interface with the PSFCC. Figure 2(a) shows the
F/A- 18 displays featuring the digital display
indicators (DDI) and up-front controller (UFC).
Figure 2(b) shows the DDI display with
programmable buttons and "arm" discrete displayed.
Lastly, figure 2(c) shows the pilot stick with the
NWS and the paddle switch.

The pilot can specify a control mode using buttons
on either of the cockpit DDI. Each DDI button is
programmed to send the PSFCC research software
two numbers: a table number and a row number.

These numbers specify which research control mode
is requested. The UFC is used to program the DDI
buttons with the table and row numbers.

Currently, the PSFCC research software has three
flight control modes: a replication mode of the basic
F/A-18 flight control system, a variable dutch roll
response mode, and a mode which locks the right
stabilator. The variable dutch roll response mode has
three levels of lateral--directional damping:
overdamped, underdamped, and unstable. A unique
table and row number exists for each of these

selections, providing for five research control law
choices. This portion of the PSFCC can be
reprogrammed to meet future research needs.

The research software has been preprogrammed with
two sets of requirements: arm requirements and
engage-disengage requirements. Current aircraft
parameters are evaluated against the requirements for
differential stabilator, normal acceleration, yaw rate,
bank angle, altitude, and Mach number. These
parameters must meet the requirements to allow the
system to be armed (enabled) and then engaged
(activated). The PSFCC are programmed with a
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Figure 1. The F/A-18 control system components.

(a) Digital display indicators and up-front controller.

Figure 2. The F/A-18 cockpit displays and pilot stick.
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(b) Digital display indicator with program buttons.

(c) Pilot stick with nose wheel steering button and paddle switch.

Figure 2. Concluded.



defaultsetof limits for eachresearch mode. The
software contains tables of alternate limits which can
be selected. These alternate limits may be selected

using additional table and row numbers (by pressing
another programmed button). Table and row number
combinations exist which correspond to different sets
of alternate limits. For example, one upper
differential stabilator arm limit could be modified, or

a complete set of altitude upper and lower arm and
engage-disengage limits could be modified using
one table and row number combination. Table 1 lists
the value of the default limits for the current PSFCC

modes. Alternate limits are presented in table 2.

Once the research mode is requested by selecting a

DDI button, the arming requirements are checked. If
these requirements are met, the PSFCC will give an
armed indication on the DDI. The pilot can attempt

to engage the mode by pressing the NWS button at
the bottom of the control stick. If engagement

requirements are satisfied, then the PSFCC will
engage. The pilot can disengage the system by
pressing the paddle switch at the bottom of the
control stick. Automatic disengagements occur when

any engagement-disengagement requirements are
violated.

Integration with the F/A-18 Aircraft

Figure 3 shows the PSFCC modification to the basic
flight control computer. The RFCS PACE 1750A

processor (Performance Semiconductor Corporation,
Sunnyvale, California) is embedded in the same
avionics box as the basic 701E flight control

processors (Lockheed Martin Control Systems
(LMCS), Binghamton, New York). The RFCS
control laws are programmed in Ada and are

independent of the basic control laws. Information to
and from the RFCS is handled by the basic flight

control system through dual port random access
memory (DPRAM) to minimize communication
delays and to isolate the basic system from RFCS
failures. The 701E processor operates with 160-Hz
subframes. It is synchronized with the RFCS using
software flags. The RFCS will not start processing a
frame until it receives a positive flag from the 701E
processor indicating that the required data have been
sent. The four F/A-18 processors are synchronized
using a 10-Hz hardware pulse. The RFCS processors
are synchronized with the basic F/A-I 8 processors
using a 160-Hz hardware pulse.

All input-output and failure monitoring is done
within the basic 701E flight control processor

system. Sensor inputs, pilot inputs, and airdata
parameters are transmitted to the basic flight control
system through analog-to-digital (A/D) converters.
These signals are then compared in the input signal
management, and a selected signal is sent to the basic
control laws and to the RFCS. Surface position
commands from the basic F/A-18 control law and

from the RFCS are sent to the output signal selection

Table 1. Default engage and disengage limits for the Production Support Flight Control Computers
research modes.

Variable stability dutch roll mode,

Parameter Basic F/A-18 replication mode locked surface mode

Armed Engage-disengage Armed Engage-disengage

Differential stabilator, deg

Normal acceleration, g

Yaw rate, deg/sec

Roll rate, deg/sec

Bank angle, deg

Altitude, kft

Mach number

+_5.0 +5.0 +5.0 +5.0

4.0 to -1.5 7.5 to -1.5 4.0 to -1.0 4.0 to -t.0

+12.0 +25.0 +12.0 +12.0

+120.0 + 120.0 +120.0 + 120.0

+ 150.0 + 150.0 +75.0 +75.0

40to 19 45to 15 21 to 19 25to 15

0.90 to 0.40 0.95 to 0.25 0.8 to 0.6 0.8 to 0.6



Table 2. Alternate engage and disengage limits for Production Support Flight Control Computers
research modes.

Upper Lower Engage and disengage Engage and disengage

Parameter ann limit arm limit limit, upper limit, lower

Differential stabilator, deg 0.5 -0.5 2.0 -2.0
1.0 -1.0 4.0 -4.0

2.0 -2.0 6.0 -6.0

3.0 -3.0 8.0 -8.0

4.0 -4.0 9.0 -9.0

Normal acceleration, g 2.0 0.5 2.0 0.0
4.0 0.0 4.0 -0.5

5.5 -0.2 5.5 -2.0

6.5 -0.6 6.5 -2.5

7.0 -1.0 7.0 -3.0

Yaw rate, deg/sec 1.0 -1.0 5.0 -5.0
3.0 -3.0 10.0 -10.0

5.0 -5.0 15.0 -15.0

7.0 -7.0 20.0 -20.0

9.0 -9.0 30.0 -30.0

Roll rate, deg/sec 10.0 -10.0 25.0 -25.0
30.0 -30.0 50.0 -50.0

50.0 -50.0 100.0 -100.0

70.0 -70.0 150.0 - 150.0

90.0 -90.0 200.0 -200.0

Bank angle, deg 10.0 -10.0 30.0 -30.0
30.0 -30.0 45.0 -45.0

45.0 -45.0 60.0 -60.0

60.0 -60.0 90.0 -90.0

90.0 -90.0 135.0 -135.0

Altitude, ft 22,500 17,500 22,500 17,500

25,000 10,000 25,000 10,000
30,000 7,500 30,000 7,500

35,000 5,000 35,000 5,000

45,000 2,000 40,000 2,000

Mach number 0.8 0.6 0.8 0.6

0.9 0.5 0.9 0.5

1.0 0.4 1.0 0.4

1.2 0.3 1.2 0.3

1.4 0.2 1.4 0.1

and fader logic, which selects the signal to be used

by the actuator signal management. These surface

positions are converted to analog signals through a

digital-to-analog (D/A) converter.

To retain the integrity of the basic F/A- 18 system, the

functionality of the basic control laws was left

unchanged except when incorporating RFCS input-

output was required. The basic system not only
provides the pilot and sensor inputs to the RFCS but

also supplies internal basic F/A-18 control law

results which can be used by the RFCS control law if

desired. Built-in-test (BIT) functions reside in the

basic system. The ability to monitor parameters

7
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within the basic RFCS control law computers was
added for flight test information and evaluation.
Sixty-four programmable words of data can be put
on the aircraft Military Specification 1553 bus and

recorded for subsequent analysis.

Because the basic F/A-18 and the RFCS flight

control systems work concurrently, a desire to
minimize the aircraft transient during RFCS and
basic F/A-18 mode transitions exists. The PSFCC

have a provision for aligning the pitch stabilator
positions between the basic F/A-18 and the RFCS
control laws. Symmetric stabilator commands from
the basic F/A-18 and the RFCS control laws are

available in the DPRAM. The unengaged flight

control system (either the RFCS or the basic 701E
processor control laws) computes a symmetric
stabilator position equal to the engaged flight control
system by aligning the pitch forward loop integrator
state.

Hardware Description

The 1750A PACE processor has 58 kilowords of
memory and uses a 40-MHz clock. This memory is
divided in the following way:

DPRAM 2

Scratchpad random access memory (RAM) 8

Electrically erasable programmable read 32

only memory (EEPROM)

Ultraviolet programmable read only 16

memory (UVPROM)

Kilowor0s

Figure 4 shows memory map of the 1750A PACE
processor. The experimental control laws are
contained in the 32 kilobytes of EEPROM. The
DPRAM has 1024 words for basic F/A-18 control

law to RFCS communication (with approximately

750 spare words). There are also 1024 words for
RFCS to basic F/A-18 control law communication

(with approximately 800 spare words). There are
62 words reserved for RFCS status data to be placed

on the Military Specification 1553 bus. A cross-
channel data link (CCDL) capability allows
24words to be broadcast to the other three

processors, with 72 words (24 from each of the other
processors) available for data comparison between
channels. Data passed through the DPRAM include

selected feedback signals, airdata and discrete data,
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Figure 4. Memory map of the PACE 1750A processor.

701E actuator servocommands, actuator positions,

and CCDL from the other processors.

System Timing

Figure 5 shows the system timing between the basic

F/A-18 processor and the RFCS processor for one

160-Hz frame. The basic F/A-18 processor performs

an executive routine, a preprocessing routine for

RFCS data, and the input signal management (ISM).

(See segment A on the diagram.) A hardware timing

discrete is then sent to the RFCS processor, which

begins its executive routine. Concurrently, the basic

F/A-18 processor and the RFCS processor begin
executing control laws. When the basic F/A-18

processor is finished with its control law execution, it

sends a data ready indicator to the RFCS processor.

(See the end of segment B on the diagram.) At this

point, updated basic F/A-18 control law calculated

data, such as surface positions, have been placed in

the DPRAM. The RFCS sends a data ready indicator

when finished. (See the end of segment C on the

diagram.) The basic F/A-18 processor expects
segments B and C to be activated within 2.2 msec. If

the RFCS data ready discrete signal is not received

within 2.2 msec, the basic F/A-18 processor declares
a failure and disengages the RFCS. The remainder of

the 160-Hz subframe is used for the remaining RFCS

and basic F/A-18 control law processing and

background tasks.

NASA DFRC RESOURCES

A facility such as the PSFCC can only be used

effectively for flight controls and handling qualities

research if all the supporting elements are present.

This section describes the PSFCC support elements
available at NASA DFRC.

F/A-18 Aircraft

Six F/A-18 aircraft are probably the most valuable

resource that NASA DFRC has in support of the

PSFCC. Currently, five F/A-18 chase aircraft could
be used as testbeds for the PSFCC. In addition, an

F/A-18 dedicated research testbed called the Systems

Research Aircraft (SRA) is available. Because none

of these F/A-18 aircraft would be solely dedicated to

PSFCC flight test, no separate funds are needed to

maintain the aircraft testbed. This approach also

allows experiments to be designed and tested on the

PSFCC with no requirement to schedule flight until it

is certain that the experiment will be ready. Note that
the PSFCC require an MC software load which can
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display the programmable buttons. This capability is
available in the majority of the MC software.

These F/A-18 chase aircraft are equipped with a

USN telemetering device called a Quick

Instrumentation Data System (QIDS). The QIDS
installs easily on any F/A-18 aircraft and will

telemeter any data which is on the Military

Specification 1553 bus. The QIDS is currently
configured to telemeter 64 words at 20 Hz. This

configuration can gather handling qualities data and
PSFCC status words. The SRA is already equipped

with a NASA research instrumentation system which
can telemeter any required parameters.

Hardware-in-the-Loop Simulation

One essential resource to have when flight testing

new aircraft systems is a hardware-in-the-loop, or in
this case, a processor-in-the-loop simulation. Such
simulation allows for realistic validation and failure

mode testing. This simulation must be at the same

location as the flight testing, so rapid examination of

flight anomalies can take place.

Figure 6 shows the processor-in-the-loop simulation
configuration for the F/A-18 test bench. This
simulation uses aircraft hardware for the PSFCC,

MC's, cockpit displays, and UFC. The PSFCC are
interfaced with the flight control computer console.
This console exchanges information with a simulator
interface device (SID) and a cockpit signal-
conditioning unit. The SID provides analog and
digital signals used by the simulation computers. The
cockpit signal-conditioning unit provides an
interface with the piloted cockpit. These simulation
computers contain a full six-degree-of-freedom
simulation which can simulate pilot inputs and
provide full data recording. A Military Specification
1553 data bus is used to interface the MC's and

PSFCC and to drive the cockpit DDI. Stripchart
recorder capability is available for real-time data
observation. The simulation can be driven with

automated scripts, and data can be logged for
posttest processing.

Experienced Personnel

During the HARV program, Ada programming and

validation testing of new control laws using the

10
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PSFCC processor were performed. Many lessons
were learned about practical issues concerning the
programming of the RFCS processors. These lessons
include

• Portability--Ada software on the HARV

program was transferred to three platforms with
only system specific changes.

• Documentability--Ada is self-documenting on
the code level; however, added documentation

on the system level operation of Ada is

necessary for coding.

• Modifiability--Ada is easy to modify.

• Testability--Testing requirements for the Ada
software were no different than those of any
other high-order language.

Reference 4 provides additional detail on these and
other related issues.

Safety-of-Flight Administrative Processes

To verify that issues addressing safe flight test have
been properly resolved, a process consisting of a
Flight Readiness Review (FRR) and an
Airworthiness and Flight Safety Review Board
(AFSRB) evaluation is conducted. An FRR consists

of a panel of working level personnel assigned to
evaluate whether a project is safe for flight test. The
project presents analysis on the safety of the
proposed flight program to the FRR panel. Then, the
panel determines whether the project has fulfilled the
requirements for safe flight. Next, the FRR panel
presents its recommendation to the AFSRB. Lastly,
the AFSRB makes the final decision on flight test for
a given project. Without the proper experience, the
FRR panel and the AFSRB could not accurately
determine if a project should go forward to flight test.
Over the past 50 years, experience in this process has
been acquired and refined for a broad range of
aircraft and other flight vehicles. This established,

11



provenprocessprovidesan extremelysafeand
relativelyfastflightapprovalprocess.

VERIFICATION AND VALIDATION TESTING

When clearing flight control computers for flight
test, verification and validation testing are necessary.

Verification testing ensures that the system was
fabricated correctly, and it fulfills the design

requirements. Validation testing determines if the

design is suitable for the task. Validation testing uses
the system under realistic conditions to determine if

operational problems exist and to assess dangerous
failure modes. The verification and validation testing

for the initial flight test thoroughly evaluates the
baseline F/A-18 flight controller and the research

flight control system. In succeeding experiments,
only the research flight control system will require
verification and validation, thereby saving time,

effort, and money for the next experiments.

Four organizations participated in testing of the
PSFCC: LMCS, MDA, NASA DFRC, and USN.

Note that LMCS and MDA perform the standard test

suite that they normally use to clear a new flight

control computer set. Tests that apply to operation in
the baseline F/A-18 and in the research control laws,

such as failure tests, are performed with the baseline
F/A-18 control system and with the research F/A-18

replication mode.

Table 3 shows the testing which was conducted in

each category and lists responsible organization.
Note that the MDA, NASA DFRC, and USN

conducted the same categories of validation testing.

This overlap occurred because the NASA DFRC and
USN have additional requirements which exceed the

original MDA effort. In addition, the NASA DFRC
and USN gathered valuable experiences during these
validation tests. These experiences serve as initial

training for flight test activities.

Module Level Testing

Low-level software testing was performed on the

basic F/A-18 control law software by LMCS. This
testing included software subroutine level testing of

the 701E processor executive, BIT software, input--
output signal management, and control laws.

Open-Loop Failure Testing

The MDA performed broken wire testing in which
the processor-in-the-loop bench is used to disconnect
various feedbacks and to determine if the computers
react properly. The term open loop refers to the fact
that the flight control processor is not linked to any
aircraft simulation so that simulated aircraft reaction
to each failure cannot be observed. Failures are

individually inserted into dual redundant and
quadredundant sensor and discrete signals to
determine if the system reacts properly to each
failure. Other failure tests include individual surface

command feedback, position feedback, hydraulic
system, and airdata failures.

Open-Loop Validation Testing

The MDA performed automated validation testing
using a system called Flight Control Automated
System Testing (FAST) on the processor-in-the-loop
test setup. By inserting signal-generating software
into the input plane of the baseline F/A-18 flight
control computers, this automated testing validates
each individual path in the control laws for
functionality. The FAST is performed on the baseline
F/A-18 flight control system and on the research
F/A- 18 replication mode.

The basic F/A-18 processors provide a great deal of
flexibility in the FAST. A software routine which is
patched into the basic F/A-18 processor software
makes it possible to vary any software variable and
to record a time history of any path in the software.
As a result, thorough tests are completed. These tests
use every flight control system input to every surface
output and vary flight conditions for the entire
envelope. Tests are conducted in the up-and-away,
powered approach flight, and outer loop (automatic
pilot) modes.

For the research software, FAST was performed
through the DPRAM locations. Because this
approach restricts the availability of internal
variables to be changed, such as gains, five flight
conditions were chosen. These conditions spanned
the dynamic pressure envelope for the research
software. The FAST is done from every flight control
input to every flight control output. These tests
consist of steps, ramps, and frequency sweeps.
Software routines automatically perform the testing,
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Table 3. Testing matrix for the Production Support Flight Control Computers.

Verification Tests LMCS MDA DFRC USN

Module level

Open-loop failure

Executive logic

Channel identification

Power on reset

Initial BIT

Military Specification1553 bus checks

Quadsensor

Airdata and angle-of-attack failures

Quaddiscrete failures

Surface command failures

Surface position failures

Hydraulic failures

Dual discrete failures

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

Validation Tests

Open-loop tests

Closed-loop tests

Closed-loop failure

Quadsensor failures

Airdata and angle-of-attack failures

Quaddiscrete failures

Surface command failures

Surface position failures

Hydraulic system failures

Dual discrete failures

Mode transition

Automatic pilot modes

Spin mode

Piloted tests

Basic familiarity

Mode transition tests

Sensor failures

Surface position failures

Hydraulic system failures

Combination surface failures

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X
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record the time history results, and compare these
results to time histories of software truth models.

Closed-Loop Validation Testing

The MDA, NASA DFRC, and USN will divide the

tasks for the closed-loop validation testing. The
PSFCC are interfaced with a six-degree-of-freedom

simulation. The configuration of which is consistent

among these organizations. Closed-loop time
histories of the PSFCC testing are recorded and

compared with software models of the baseline
F/A-18 control laws and RFCS modes. This testing

validates the performance of the baseline F/A-18

airplane and of the PSFCC control modes. Tests
include automated pilot inputs of steps, doublets, and

frequency sweeps.

The baseline F/A-18 control law tests are performed

at 12 up-and-away flight conditions and 5 powered
approach flight conditions. The PSFCC F/A-18

replication mode tests are performed at up-and-away
flight conditions above 15,000 ft (the low altitude
limit for the research modes). The variable stability
and locked surface modes are performed at five flight

conditions within their operating envelope.

Closed-Loop Failure Tests

In closed-loop failure tests performed by the MDA,
NASA DFRC, and USN, pilot inputs are placed into

the processor-in-the-loop test setup linked with a six-
degree-of-freedom simulation. The same failures

induced during the open-loop failure tests are
induced here. Time history data are examined to see
if excessive transients occur for the baseline F/A-18

flight control system and for the research flight

control system.

Mode Transitions, Automatic Pilot Modes, and

Spin Modes

In mode transition, automatic pilot, and spin mode

tests, the auxiliary modes are tested for basic
functionality. Automatic pilot modes tested include

heading hold, barometric altitude hold, radar altitude
hold, velocity hold, automatic carrier landing
system, and instrument landing system. Flap

transitions tested consist of up-and-away, half-flap,
and full-flap operations. The spin mode is also tested.

Piloted Tests

Pilots fly the processor-in-the-loop simulation to
gain basic familiarity with the system. Transients
resulting from envelope and maneuvering require-
ment violations are evaluated to determine if
excessive aircraft motion is encountered. Such

system failures as sensor failures, surface command
failures, and hydraulic failures are induced during
simulated flight to determine if undesirable
transients occur.

PRODUCTION SUPPORT FLIGHT
CONTROL COMPUTERS POTENTIAL

ACTIVITIES

The PSFCC provides a flexible control law and
handling qualities research tool. Because the

necessary facilities and personnel reside at the
NASA DFRC, programs can easily be completed on

a part-time or time available basis. This section
describes potential activities for the PSFCC. Items

described include experimental control law
architectures, handling qualities experiments, and

aircraft excitation systems.

Experimental Control Law Architectures

The primary goal of developing the PSFCC is for
flight testing of experimental control law algorithms.
Limiting the flight envelope with appropriate
operational engagement and disengagement limits
provides relatively fast prototyping and flight test of
experimental control law designs.

Because the research processors in the PSFCC are

quadredundant, operational issues concerned with
redundancy management must be solved before
flight test occurs. Many new algorithms contain
neural network software which might learn
differently across four channels, resulting in one or
more computers being voted out. The CCDL
capability of the PSFCC allows each research
computer to use variable values from each of the
other three computers. Perhaps, this knowledge can
be used to implement advanced or neural network
architectures.

The F/A-18 aircraft have surfaces which can be used

for roll and yaw motions. Differential stabilator,
ailerons, and rudder can be allocated in several
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combinationsto producethe sameaerodynamic
moment.If thesurfacecombinationcanbeoptimized
for theminimumoverallsurfacedeflection,aircraft
drag and hydraulic systemrequirementscan be
reduced.A numberof organizations,suchas the
Honeywell Technology Center, Minneapolis,
Minnesota,andtheVirginiaPolytechnicInstituteand
StateUniversity,Blacksburg,Virginia,havestudied
thisproblem[5].ThePSFCCprovidesanopportunity
toflighttestdifferingphilosophiesconcerningsurface
allocation.

A designefforthasalreadybeenstartedtoaddressthe
possibilitiesof usingdifferentialthrustonanF/A-18
airplaneto dampenlateral-directionalflight control
modes.Thrustmodulationhasbeenusedfor backup
controlof aircraft,includinganF-15landingwhich
was performedusing thrust [6]. The PSFCC
accommodatesthe addition of enginesinto the
F/A-18controllawwithnumeroussafetytripscaused
byunwantedflightdynamics.

Handling Qualities Experiments

Handling qualities experiments can be performed
using the PSFCC. Many control laws, such as model-
following techniques, are designed such that
frequency and damping are specified for the airframe.
The first phase of handling qualities research involves

using such a control law to validate the frequency and
damping of the airframe. Next, the results are

compared to the requested frequency and damping.
This approach would lay the groundwork for
validation of experiments which equate aircraft
frequency and damping to handling qualities rating,
such as Cooper-Harper ratings [7].

Other experiments may include flight test with
different pilot control sticks to assess changes caused
by the different mechanical affects on a level 1
handling aircraft. By installing different sticks in the
rear cockpit of a two-seat F/A-18 airplane, pilot
evaluation could be obtained safely. The ability to
revert to the baseline F/A-18 system would be
retained.

Aircraft Excitation Systems

The PSFCC research control modes could be used for

programmed excitations to surfaces, such as steps,
doublets, and frequency sweeps. These excitations

could provide parameter identification, in-flight gain,

and phase margin calculations. Singular value
calculations, flutter evaluation, or aeroservoelasticity
research could also be conducted.

As this paper is being written, the LMCS and MDA
tests are finished, and the NASA DFRC and USN

phases of the bench testing have recently begun. The
USN and NASA DFRC are learning the specific
aircraft requirements for using the PSFCC, such as
correct mission computer loads. This testing and the
NASA DFRC FRR process are expected to require
approximately 3 months to complete. A first flight is
planned for late summer 1997.

SUMMARY

The Production Support Flight Control Computers
(PSFCC) can give any fleet F/A-18 airplane an in-
flight, pilot-selectable, research control law

capability. The PSFCC design uses a Research Flight
Control System (RFCS) processor in addition to the

basic F/A-18 quadraplex flight control computers.
The RFCS can be engaged by the pilot to exercise
full-authority control of the aircraft with research
flight control laws. The basic F/A-18 flight control

system is used for all flight phases when the RFCS is
not engaged, such as takeoff and landing. It is also
used as the reversion mode when the RFCS control

laws are disengaged. Because the research processor
in the PSFCC can be engaged or disengaged by
the pilot or automatically disengaged due to
system, flight envelope, or maneuvering limits, the
mechanization addresses flight safety concerns. All of
the redundancy management and safety systems
of the F/A-18 remain unchanged. The PSFCC
configuration reduces the amount of effort required
for the design and test of experimental flight control
software.

There are five major benefits of using the PSFCC at
NASA DFRC. Dryden Flight Research Center has

• Six F/A-18 aircraft available for this type of
research

° Chase aircraft which have been equipped with
instrumentation and telemetering systems for
data transmission

• Processor-in-the-loop simulation for verification
and validation testing

° Personnel familiar with programming of the
research processor
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Safety-of-flightprocessesestablishedwhich
addressthe concerns for an aircraft research

control system in a timely manner

Once the initial flight test of the PSFCC has been

completed successfully, the PSFCC facility will be

useful for a variety of flight control and handling

quality research experiments. Because experiments
can be designed and executed within a limited flight

envelope, less work, such as analysis and testing, will

be required to bring advanced concepts to flight.
Advanced algorithms will be flight tested to find

potential problems or payoffs associated with actual

flight applications. Flight control systems which

specify airframe frequency and damping can be
flight verified and used to determine handling quality

ratings as a function of airframe dynamics. Alternate
control sticks can be used to determine their affects

on aircraft handling qualities. In-flight excitation

systems can be used for parameter identification,
phase and gain or singular value calculations, and

flutter or aeorsevoelasticity research.
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